Differential Geometry

Midterm Examination

September 11, 2025

Instructions: All questions carry ten marks.

- 1. State and prove the Mean Value Theorem for a smooth function $f: \mathbb{R}^n \to \mathbb{R}^m$.
- 2. Let $S_0 = \{(x, y, z) \mid x^2 + y^2 = 1, |z| < 1\}$ denote the open cylinder in \mathbb{R}^3 . Prove that there exists a diffeomorphism that is *equiareal* between S_0 and the unit sphere S^2 without a pair of antipodal points.
- 3. Define the Gauss map for an oriented surface S. Prove that at each of point $p \in S$, the differential of the Gauss map is a self-adjoint operator on the tangent space $T_p(S)$ of the surface at p.
- 4. Define an *umbilical* point of an oriented surface $S \subset \mathbb{R}^3$. If a connected oriented surface in \mathbb{R}^3 has only umbilical points, then prove that it is contained in a sphere or a plane.
- 5. Let $h: \mathbb{R}^2 \to \mathbb{R}$ be a smooth function and S denote the regular surface in \mathbb{R}^3 given by its graph. Prove that the Gaussian curvature of S is given by the formula

$$K = \frac{h_{xx}h_{yy} - h_{xy}^2}{(1 + h_x^2 + h_y^2)^2}$$

where x, y are the corrdinates of \mathbb{R}^2 .